Biological Goals and Objectives for the Clark County, NV Multiple Species Habitat Conservation Plan - Final

Prepared for the:

desert conservation

4701 W. Russell Rd.

Las Vegas, NV, 89118

2013-TERRA-1410B-D10

Prepared by:

The Science Advisor Panel for the Desert Conservation Program:

TerraGraphics Environmental Engineering, Inc.

108 W. Idaho Ave.

Kellogg, ID 83837

www.terragraphics.com

Heron Ecological, LLC

June 22, 2016

Contents

ection 1.0 Introduction 1	
ection 2.0 Process for Developing Biological Goal and Objectives 1	
2.1 Definitions	,
2.2 Framework for Biological Goals and Objectives Development	,
2.3 Biological Goals and Objectives Workshop 2	,
ection 3.0 Draft Biological Goals and Objectives	
3.1 Riparian Biological Goals and Objectives	
3.2 Desert Upland Biological Goals and Objectives 4	•
ection 4.0 References	,

Acronyms and Abbreviations

BGOs	Biological goals and objectives
DCP	Clark County Desert Conservation Program
MSHCP	Multiple Species Habitat Conservation Plan
TerraGraphics	TerraGraphics Environmental Engineering, Inc.
USFWS	U.S. Fish & Wildlife Service

Section 1.0 Introduction

Habitat Conservation Plans, including Multiple Species Habitat Conservation Plans (MSHCP), must establish biological goals and objectives as stated in the five point policy adopted by U.S. Fish & Wildlife Service (USFWS) (65 Fed. Reg. 35242 [USFWS 2000]). Biological goals and objectives (BGOs) form the basis for developing, administering, and evaluating conservation measures undertaken as part of implementing an MSHCP. BGOs aim to create a framework that links a program vision and plan requirements with on-the-ground conservation measures, programs, and actions. The challenge in creating BGOs is for them to provide specific, realistic, and achievable goals that fit the conservation program vision without inherently basing them on existing or preferred conservation actions. In an effort to further develop the BGOs in the current Clark County, NV MSHCP (Clark County 2000), the independent Science Advisor Panel and Clark County Desert Conservation Program (DCP) staff conducted a joint workshop on April 11th and 12th, 2016. We used an unbiased approach to revise existing and develop new BGOs meant to be biologically relevant, meaningful, and achievable. This ensures the effectiveness and continuity of conservation measures, biological goals, and objectives now and in the future. The workshop participants considered BGOs that are appropriate for both the current and the proposed amendment to the MSHCP.

This report discusses the development of the BGOs and describes the draft BGOs for DCP review. This report will be used by the DCP staff as a guiding factor in funding future projects as well as an assessment tool at the conclusion of projects (or for biennium reporting) to determine if BGOs are being met. Conservation measures and other quantifiable actions will be listed and described in the Adaptive Management Monitoring Plan, to be authored by the Science Advisory Panel in 2016.

Section 2.0 Process for Developing Biological Goal and Objectives

Biological goals are the broad, guiding principles for the operating conservation program of the MSHCP. Biological goals are intentionally broad and general as they describe the desired future state of a species or biological system, and because of their descriptive nature they are not directly quantifiable. They provide the rationale for the conservation actions needed to minimize and mitigate adverse effects on the covered species to the maximum extent practicable.

To achieve the biological goals, manageable and measurable biological objectives are developed. A biological objective is the specific, concrete, and quantifiable target that leads to achieving the biological goal.

Objectives are achieved via conservation measures, which are the measures, programs, and actions that are implemented on the ground. Together, the biological goals and objectives also provide the rationale behind the MSHCP's terms and conditions, guide monitoring, and, when appropriate, inform adaptive management. This report discusses the development of the BGOs; conservation measures will be listed and described in the Adaptive Management Monitoring Plan.

2.1 Definitions

Here we define four specific biological terms and concepts used to generate the following list of BGOs:

- Reserve system Those lands over which the Clark County Desert Conservation Program has direct control of management activities, including via direct acquisition, easements, or future cooperative management agreements.
- Ecological resilience The capacity of a system to withstand acute and diffuse stressors without experiencing widespread negative regime changes, such as species extirpation or a fundamental loss of ecosystem function. Ecological resilience can be increased through maintaining spatial connectivity, spatiotemporal variability in ecological processes, and adaptive management (Gunderson 2000, Kondoh 2012).
- Habitat-based surrogate habitat attributes that are used as proxies for the presence, abundance, or diversity of particular elements (e.g., animal species, vegetation structure or composition) of the biota at both site- and landscape-levels (Lindenmayer et al. 2014).
- Surrogate species subsets of species which are representative of multiple species or aspects of the environment. These include umbrella, focal, keystone, indicator, and flagship species. Surrogate species are commonly used for comprehensive planning that supports multiple species and habitats within a defined landscape or geographic area (USFWS 2012).
- Species occupancy Whether or not a covered species is present in appropriate habitat during part or all of the year.

2.2 Framework for Biological Goals and Objectives Development

To ensure an objective and thorough process for creating and evaluating the BGOs, the workshop began by comparing potential frameworks for generating biological goals, falling into two general types: unstructured and structured.

An unstructured goal-generating framework is free-form and places no constraints on developing BGOs. It may include either a single over-arching goal, or multiple unrelated goals. The benefit to this type of framework is the lack of any restrictive structure on the relationships among goals, with the drawback that an important goal may be overlooked or this framework may result in a set of biological goals that do not reflect the ecological or policy implementation structure of the MSHCP. In contrast, a structured framework follows a specific organizational structure or method to classify each goal (e.g., categories). The benefit of a structured framework is that it guides goal generation to ensure all important goals are identified and are related to underlying ecological or policy structures. The challenge to a structured framework is to ensure that the structure aligns with ecological or policy factors and that it is sufficiently, but not overly, specific in the number of goals generated.

2.3 Biological Goals and Objectives Workshop

To guide the development of BGOs, DCP staff and the Science Advisor Panel members proposed six criteria for the goals and objectives. These criteria included: the adopted goals and

objectives must (1) pertain to and support the MSHCP, (2) be achievable, (3) be affordable, (4) be on land on which the county can ensure durability, (5) be easily measured, and (6) provide high quality biological information. As each BGO was developed, it was evaluated against each of the six criteria, and modified as needed.

At the April 2016 workshop, DCP staff and the Science Advisor Panel members agreed that a structured goal-generating framework was optimal and chose to use 'categories', such as species, time frames, and habitats, as the structure. Group consensus amongst participants was that this approach was closely aligned with the vision outlined in the MSHCP, with a focus on covered species and their habitats. This approach also allowed for developing habitat or population goals that encompassed multiple covered species, a benefit that increases the effectiveness of conservation measures. The two chosen habitats that were used as structural categories were Riparian and Desert Upland.

Development of the biological goals and the objectives followed separate, but parallel processes. The workshop attendees brainstormed potential biological goals in each category in reference to the MSHCP-covered species list and information on potential future covered species under the proposed plan amendment. Attendees then listed potential drawbacks for each goal and finally re-assessed the list to condense it to the most relevant, meaningful, and achievable goals. Additional points of focus were to create biological goals that appropriately mitigate for impacts of development, that facilitate prioritization of conservation measures, and that can serve as future benchmark standards to verify the success of the MSHCP and associated conservation actions. After finalizing and achieving group consensus on the content and wording of the biological goals, the workshop attendees conducted the same brainstorming, drawback critique, and final assessment process for objectives within each goal. This process resulted in 4 biological goals and 11 objectives total in the Riparian category and 4 goals and 13 objectives total in the Desert Upland category

Section 3.0 Draft Biological Goals and Objectives

3.1 Riparian Biological Goals and Objectives

The Riparian BGOs were developed with the intent that acquiring (where feasible), maintaining, enhancing, and restoring functioning riparian habitat will benefit MSHCP-covered riparian species, particularly covered avian and mammal species. Species-based surrogate and habitat-based surrogate concepts were used to guide the development of the BGOs. Goals and objectives that aim to directly benefit certain species will also benefit other species that co-occur in riparian areas. For example, certain riparian obligate bird species (southwestern willow flycatcher [*Empidonax trailii extimus*] and yellow-billed cuckoo [*Coccyzus americanus*]) are considered surrogate species; habitat improvements that benefit these species will also benefit MSHCP-covered species such as those species dependent on cottonwood-willow habitat. For rare or elusive species (i.e., those that are difficult to detect), the concept of a habitat-based surrogates can guide conservation or habitat restoration efforts with the intention of maximizing opportunities for the species to occupy the area. The following goals and objectives were developed specifically for conservation actions that will benefit riparian-associated MSHCP-covered species in current or future Riparian Reserve Units. A list of MSHCP-covered species that occur in riparian habitat is shown in Appendix A.

Goal R 1. Maintain, improve, and expand habitat for the MSHCP-covered species on riparian reserve system lands

Objectives:

- R 1.1: Monitor MSHCP-covered species occupancy
- *R* 1.2: Maintain and/or increase suitable breeding habitat for MSHCP-covered birds
- *R 1.3*: Incorporate elements of natural riparian processes into restoration design and implementation
- R 1.4: Inventory, remove, and control invasive and non-native plant species
- *R 1.5*: Reduce habitat fragmentation and/or improve connectivity and habitat quality through restoration design and implementation
- *R 1.6*: Acquire riparian property at an equivalent rate as take (i.e., habitat conversion)

Goal R 2. Maintain stable or increasing populations of federally-listed threatened and endangered (T&E) species on riparian reserve system lands

Objectives:

R 2.1: Monitor and adaptively manage for breeding bird populations

Goal R 3. Foster community and stakeholder engagement to benefit covered species

Objectives:

- *R 3.1*: Collaborate with other stakeholders on project/mitigation work (e.g., agencies, permittees)
- *R* 3.2: Promote responsible recreation (e.g., signage, education)

Goal R 4. Promote ecological resiliency on riparian reserve system lands

Objectives:

- *R 4.1*: Identify critical uncertainties and address these through planning and adaptive management, when feasible (e.g., land use changes, catastrophic events—fire, climate change)
- *R 4.2:* Identify critical connectivity corridors for covered species and prioritize acquisition and/or conservation where feasible

3.2 Desert Upland Biological Goals and Objectives

The Desert Upland BGOs were developed with a focus on managing existing reserve system lands, and additional land that may be added to the reserve system in the future, for the benefit of covered species and their habitats. The primary focus is on Mojave desert scrub and mesquite/acacia habitats. The Desert tortoise (*Gopherus agassizii*) is considered to be a surrogate species for other MSHCP-covered species that rely on similar habitat components. Species that rely on this habitat for foraging only, such as peregrine falcon (*Falco peregrinus*) and crevice and cavity roosting bats may also benefit from implementation of the BGOs in this category. A list of MSHCP-covered species that occur in desert upland habitat is shown in Appendix A. **Goal D 1.** Maintain, improve, and expand habitat for MSHCP-covered species on desert upland reserve system lands

Objectives:

- D 1.1: Monitor MSHCP-covered species occupancy
- *D 1.2*: Maintain existing intact functioning habitat and restore degraded habitat (use Objective D 1.1 to determine if habitat qualifies as functioning)
- *D 1.3*: Protect and conserve habitat for covered plants (i.e., physical protection of plants with specific requirements)
- D 1.4: Inventory, remove, and control invasive and non-native plant species
- *D 1.5*: Reduce habitat fragmentation and/or improve connectivity through restoration design and implementation

Goal D 2. Maintain stable or increasing populations of Federal T&E-listed species on desert upland reserve system lands

Objectives:

- D 2.1: Monitor and adaptively manage for desert tortoise populations
- D 2.2: Augment populations through translocation programs when appropriate

Goal D 3. Foster community and stakeholder engagement to benefit covered species

Objectives:

- *D 3.1*: Collaborate with other stakeholders on project/mitigation work (e.g., agencies, permittees)
- D 3.2: Promote responsible recreation (e.g., signage, education)
- D 3.3: Provide law enforcement within reserve system
- *D 3.4*: Educate project proponents and construction personnel about procedures for reporting desert tortoises that occur on project sites and provide a mechanism for collection and relocation of tortoises in collaboration with the US Fish and Wildlife Service

Goal D 4. Promote ecological resiliency on desert upland reserve system lands

Objectives:

- *D 4.1*: Identify critical uncertainties and address these through planning and adaptive management, when feasible (land use changes, catastrophic events—fire, climate change)
- *D 4.2:* Identify critical connectivity corridors for covered species, prioritize conservation and/or acquisition of corridors, and increase permeability for species movement where feasible

Section 4.0 References

- Clark County. 2000. Final Clark County multiple species habitat conservation plan and environmental impact statement for issuance of a permit to allow incidental take of 79 species in Clark County, Nevada. September 2000.
- Gunderson, L.H. 2000. Ecological resilience in theory and application. Annual Review in Ecology and Systematics 31:425-439.
- Kondoh, M., 2012. Resilience and stability. Pages 624-629 in A. Hastings and L. J. Gross, editors, Theoretical Ecology, University of California Press, Berkeley, CA. 823 pp.
- Lindenmayer D.B., Barton P.S., Lane P.W., Westgate M.J., McBurney L., et al. 2014. An empirical assessment and comparison of species-based and habitat-based surrogates: a case study of forest vertebrates and large old trees. PLoS ONE 9(2): e89807.
- U.S. Fish and Wildlife Service (USFWS). 2000. Notice of availability of a final addendum to the handbook for habitat conservation planning and incidental take permitting process. Federal Register 65(106):35242-35257.
- U.S. Fish and Wildlife Service (USFWS). 2015. Technical reference on using surrogate species for landscape conservation. 13 August 2015.

1

Appendix A

List of current covered species under the Multiple Species Habitat Conservation Plan and whether they are addressed by Riparian or Desert Upland Biological Goals and Objectives.

Т

٦

Common Name	Scientific Name	Riparian / Desert *
COVERED SPECIES		
Birds		
Yellow-billed cuckoo	Coccyzus americanus	Riparian
Southwestern willow flycatcher	Empidonax traillii extimus	Riparian
American peregrine falcon	Falco peregrinus anatum	Desert
Blue grosbeak	Guiraca caerulea	Riparian / Desert
Phainopepla	Phainopepla nitens	Riparian / Desert
Summer tanager	Piranga rubra	Riparian
Vermillion flycatcher	Pyrocephalus rubinus	Riparian / Desert
Bell's vireo	Vireo bellii	Riparian
Mammals	·	
Silver-haired bat	Lasionycteris noctivagans	Riparian
Long-eared myotis	Myotis evotis	N/A
Long-legged myotis	Myotis volans	Riparian / Desert
Palmer's chipmunk	Neotamias palmeri	N/A
Amphibians		
Relict leopard frog	Rana onca	N/A
Reptiles		
Glossy snake	Arizona elegans	Desert
Western banded gecko	Coleonyx variegatus	Desert / Riparian
Sidewinder	Crotalus cerastes	Desert
Speckled rattlesnake	Crotalus mitchellii	Desert
Mojave green rattlesnake	Crotalus scutulatus scutulatus	Desert
Great Basin collared lizard	Crotaphytus bicinctores	Desert
Desert iguana	Dipsosaurus dorsalis	Desert
Large-spotted leopard lizard	Gambelia wislizenii wislizenii	Desert
Desert tortoise	Gopherus agassizii	Desert
California kingsnake	Lampropeltis getulus californiae	Desert
Western leaf-nosed snake	Phyllorhynchus decurtatus	Desert

Г

Common Name	Scientific Name	Riparian / Desert *
Western red-tailed skink	Plestiodon gilberti rubricaudatus	Riparian / Desert
Western long-nosed snake	Rhinocheilus lecontei lecontei	Desert
Sonoran lyre snake	Trimorphodon biscutatus lambda	Desert
Invertebrates		
Spring Mountains acastus checkerspot	Chlosyne acastus robusta	N/A
Dark blue butterfly	Euphilotes ancilla purpura	N/A
Morand's checkerspot butterfly	Euphydryas anicia morandi	N/A
Spring Mountains comma skipper	Hesperia colorado mojavensis	N/A
Spring Mountains icariodes blue	Icaricia icarioides austinorum	N/A
Mt. Charleston blue butterfly	Icaricia shasta charlestonensis	N/A
Nevada admiral	Limenitis weidemeyerii nevadae	N/A
Spring Mountains springsnail	Pyrgulopsis deaconi	N/A
Southeast Nevada springsnail	Pyrgulopsis turbatrix	N/A
Carole's silverspot butterfly	Speyeria zerene carolae	N/A
Plants	·	
[No common name]	Anacolia menziesii	N/A
Rough angelica	Angelica scabrida	N/A
Charleston pussytoes	Antennaria soliceps	N/A
Sticky ringstem	Anulocaulis leiosolenus	Desert
Las Vegas bearpoppy	Arctomecon californica	Desert
White bearpoppy	Arctomecon merriamii	Desert
Rosy king sandwort	Arenaria kingii ssp. rosea	N/A
Clokey milkvetch	Astragalus aequalis	N/A
Threecorner milkvetch	Astragalus geyeri var. triquetrus	Desert
Clokey eggvetch	Astragalus oophorus var. clokeyanus	N/A
Spring Mountains milkvetch	Astragalus remotus	N/A
Alkali mariposa lily	Calochortus striatus	Desert
Clokey paintbrush	Castelleja martinii var. clokeyi	N/A
Clokey thistle	Cirsium clokeyi	N/A
No common name	Claopodium whippleanum	N/A
Blue Diamond cholla	Cylindropuntia multigeniculata	Desert
No common name	Dicranoweisia crispula	N/A

Common Name	Scientific Name	Riparian / Desert *
Jaeger whitlowgrass	Draba jaegeri	N/A
Charleston draba	Draba paucifructa	N/A
Inch high fleabane	Erigeron uncialis ssp. conjugans	N/A
Forked (Pahrump Valley) buckwheat	Eriogonum bifurcatum	Desert
Sticky buckwheat	Eriogonum viscidulum	Desert
Clokey greasebush	Glossopetalon clokeyi	N/A
Smooth pungent (dwarf) greasebush	Glossopetalon pungens var. glabrum	N/A
Pungent dwarf greasebush	Glosspetalon pungens var. pungens	N/A
Red Rock Canyon aster	Ionactis caelestis	N/A
Hidden ivesia	Ivesia cryptocaulis	N/A
Jaeger ivesia	Ivesia jaegeri	N/A
Hitchcock bladderpod	Lesquerella hitchcockii	N/A
Charleston pinewood lousewort	Pedicularis semibarbata var. charlestonensis	N/A
White-margined beardtongue	Penstemon albomarginatus	Desert
Charleston beardtongue	Penstemon leiophyllus var. keckii	N/A
Jaeger beardtongue	Penstemon thompsoneae var. jaegeri	N/A
Parish's phacelia	Phacelia parishii	Desert
Clokey mountain sage	Salvia dorrii var. clokeyi	N/A
Clokey catchfly	Silene clokeyi	N/A
Charleston tansy	Sphaeromeria compacta	N/A
Charleston kittentails	Synthyris ranunculina	N/A
No common name	Syntrichia princeps	N/A
Charleston grounddaisy	Townsendia jonesii var. tumulosa	N/A
Limestone violet	Viola purpurea var. charlestonensis	N/A

*Species marked with 'N/A' are not addressed by either Riparian or Desert Upland Biological Goals or Objectives because they occur at high elevations that are not impacted by private land development within Clark County or they are covered by other existing regulatory mechanisms.